Computational Intelligence in Multi-channel EEG Signal Analysis

نویسندگان

  • Ales Procházka
  • Martina Mudrová
  • Oldrich Vysata
  • Lucie Gráfová
  • Carmen Paz Suárez Araujo
چکیده

Computational intelligence and signal analysis of multi-channel data form an interdisciplinary research area based upon general digital signal processing methods and adaptive algorithms. The chapter is restricted to their use in biomedicine and particularly in electroencephalogram signal processing to find specific components of such multi-channel signals. Methods presented include signal de-noising, evaluation of their fundamental components and segmentation based upon feature detection in time-frequency and time-scale domains using both the discrete Fourier transform and the discrete wavelet transform. Resulting pattern vectors are then classified by self-organizing neural networks using a specific statistical criterion proposed to evaluate distances of individual feature vector values from corresponding cluster centers. Results achieved are compared for different data sets and selected mathematical methods to detect segments features. Proposed methods verified in the MATLAB environment using distributed data processing are accompanied by the appropriate graphical user interface that enables convenient and user friendly time-series processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Hybrid Fractal-Wavelet Method for Multi-Channel EEG Signal Compression

In this paper, a hybrid method is proposed for multi-channel electroencephalograms (EEG) signal compression. This new method takes advantage of two different compression techniques: fractal and wavelet-based coding. First, an effective decorrelation is performed through the principal component analysis of different channels to efficiently compress the multi-channel EEG data. Then, the decorrela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012